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(57) ABSTRACT 

A method and system for design optimization that incorpo- 
rates the advantages of both traditional response surface 
methodology (RSM) and neural networks is disclosed. The 
present invention employs a unique strategy called 
parameter-based partitioning of the given design space. In 
the design procedure, a sequence of composite response 
surfaces based on both neural networks and polynomial fits 
is used to traverse the design space to identify an optimal 
solution. The composite response surface has both the power 
of neural networks and the economy of low-order polyno- 
mials (in terms of the number of simulations needed and the 
network training requirements). The present invention 
handles design problems with many more parameters than 
would be possible using neural networks alone and permits 
a designer to rapidly perform a variety of trade-off studies 
before arriving at the final design. 

4 Claims, 6 Drawing Sheets 
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METHOD FOR CONSTRUCTING 
COMPOSITE RESPONSE SURFACES BY 

COMBINING NEURAL NETWORKS WITH 
OTHER INTERPOLATION OR ESTIMATION 

TECHNIQUES 

obtain the optimal design. Starting from an initial compo- 
nent shape that is reasonable, the design space is searched 
using this gradient information. Thc main advantage of this 
method is that the gradient information is obtained very 

5 rapidly. However, the method has several shortcomings. It is 
difficult to use this method to arrive at an optimal design 

CROSS-REFERENCE TO RELATED when several engineering disciplines (such as, 
aerodynamics, structures, and heat transfer) need to be 
considered simultaneously. It requires a completely different 

This apphcation claims the benefit Of U.S. Provisional 1o formulation for every discipline and for every set of gov- 
erning equations within each discipline. It is also difficult to 
rapidly evaluate design tradeoffs which require that the 
constraints be changed many times. It is also not possible to 
use existing design or experimental data, or partial or 

Sensitivity derivative-based methods typically require 
that many aerodynamic solutions be obtained in order to 
compute the gradient of the objective function. As the 

The invention described herein was made by employees number of design parameters increases, these methods can 
of the United States Government and may be manufactured 2o become computationally expensive to use. They are also 
and used by or for the Government for governmental pur- sensitive to any noise in the design data sets. Additionally, 
poses without the payment of any royalties thereon or like the adjoint methods, it is not always possible to use 
therefor. existing design or experimental data, or partial or unstruc- 

tured sets of data, to influence the design process. Design 
25 tradeoff studies require that additional aerodynamic simu- 

1. Technical Field lations be performed, thus incurring additional expense. 
However, they are applicable to a wide range of aerody- The present invention is directed toward an improved namic design problems. method and system for design optimization using composite 

response surfaces. These composite response surfaces are Response surface (RSM) represents a 
constructed by combining neural networks kith other 30 framework for obtaining optimal designs using statistical 

In the present ments. Traditional RSM, as it has been used in practice, 

variation of the aerodynamic quantities, or some measure of data in aerodynamic design optimization. 
35 optimality, with respect to the design variables. This poly- 

nomial model of the objective function in design space is 2. Description of the Related Art 
Considerable advances have been made in the Past two then searched to obtain the optimal design. Several such 

decades in developing adVanced techniques for the mmeri- polynomial models may have to be constructed to traverse 
Cal simulation of fluid flows Over aerodynamic configura- the region of design space that lies between the initial design 
tions. These techniques have now reached a level of maturity 40 and the optimal design. This method does not suffer from the 
where they can be used routinely, in conjunction With shortcomings of the methods mentioned above. However, 
experiments, in aerodynamic design. However, aerodynamic modeling complex functional behaviors using RSM will 
dcsign Optimization procedures that makc effiCient Use Of ncccssitatc the use of high-order polynomials with their 
these advanced techniques are still in their infancy. attendant problems. 

Artificial neural networks have been widely used in 
as wings Of engines, involves a process of obtaining the most aeronautical engineering, Recent aerodynamic applications 
optimal component S h W  that Can deliver the desired level include, for cxample, flow control, estimation of acrody- 
of -com~oncnt performance, subject to various constraints, namic coefficients, compact functional representations of 

total weight Or Cost, that thc ComPonCnt must Satisfy. acrodynamic data for rapid intcrpolation, grid gcncration, 
AcrodYnamic design Can thus bc f0fn~latcd as an OPtimi- 50 and acrodynamic dcsign. Neural networks havc bccn uscd to 
zation problcm that inVOhCS the minimization Of  Wl objcc- both model unsteady flows and to optimize aerodynamic 
tivc function SUbJCCt 10 constraints. A VariclY of fOrmal pcrformancc paramctcrs. Significant cost savings havc bccn 
optimization mcthods havc bccn d c v c l o ~ d  in the past and rcalizcd in reducing wind tunnel test times by using neural 
aPPlicd to aerodynamic design. Thcsc inchdc invcrsc design ncts to intcrpolatc bctwccn mcasurcmcnts. Ncural nctwork 
mcthods, adjoint mcthods, scnsitivity dcrivativc-bascd 55 applications in aeronautics arc not limited 10 aerodynamics 
methods, and traditional rcsPonsc surface mclhodologY and may bc applied in structural analysis and dcsign as wcll 
(RSM). as many othcr tcchnical disciplincs. 

Invcrsc dcsign mcthods, as the namc suggests, arc strictly In ordcr for neural networks to be uscd cffectivcly in 
used for inverse design (for example, to design a wing that dcsign, i t  is imperative that the dcsign space be populated 
produces a prescribed pressure distribution). The known 60 both adequately and efficiently with simulation or cxperi- 
inverse design methods do not take into account the viscos- mental data. A sparse population results in an inaccurate 
itY of the fluid and are therefore used in Preliminary design representation of the objective function in design space 
only. This method is applicable to a small class of aerody- while an inefficient use of aerodynamic data in populating 
namic design problems, such as those where the entire the design space could resuit in excessive simuiarion costs. 
pressure distribution can be specified a priori. 65 Current applications of neural networks are restricted to 

Adjoint methods provide the designer with the gradient of simple designs involving only a few design parameters 
the objective function that is being minimized in order to because a linear increase in the number of design parameters 

APPLICATIONS 

Application NOS. 60/096,660, filed Aug. 13, 19% entitled 
“Aerodynamic Design Using Neural Networks,” and 
60/113,310, filed Dec. 22, 1998, entitled “Neural Network- 
Based Redesign of Transonic Turbines for Improved 
Unsteady Aerodynamic Performance,” both of which are 15 unstructured sets of data, to influence the design process. 
herein incorporated by reference. 

ORIGIN OF THE INVENTION 

BACKGROUND OF THE INVENTION 

interpolatjon/estimation techniques such as polynomial fits, methods such as regression and design Of expen- 
relates to a flexible 

process for the efficient use of simulation and experimental low-order regression polynomials to model the 

The design of aerodynamic components of aircraft, such 45 
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often results in a geometric increase in the number of 
datasets required to adequately represent the design space. 

Therefore, a need exists for adequately and efficiently 
populating large-dimensional design spaces to achieve an 
optimal design. More particularly, to be able to use existing 
design or experimental data, or partial or unstructured sets of 
data, to influence the design process. The subject invention 
herein, solves these problems in a novel manner not previ- 
ously known in the art. 

SUMMARY OF THE INVENTION 

It is therefore the object of the present invention to 
provide an improved method and system for design 
optimization, using composite response surfaces, and having 
the following characteristics: 

ability to start from a generic design that is far from 

easy and economical to use in large dimensional design 

ability to handle a variety of design objectives; 
ability to easily impose constraints, incorporate design 

ability to handle both simulation and experimental data 

ability to handle partial data sets and data that lack 

insensitivity to noise in the data; 
ability to handle data of varying fidelity as the design 

ability to handle unsteady data (unsteady effects) in the 

flexibility to handle additional data as it becomes avail- 

ability to rapidly perform design trade-off studies; 
ability to leverage the multi-tiered parallelism possible on 

distributed and parallel computers; and 
ability to execute designs that are influenced by multiple 

The foregoing object is achieved, as is now described, 
using a method and system that incorporates the advantages 
of both traditional response surface methodology (RSM) and 
neural networks. The present invention employs a unique 
strategy called parameter-based partitioning of the given 
dcsign spacc. In the design procedure, a sequence of com- 
posite response surfaces bascd on both neural nctworks and 
polynomial fits are uscd to traverse thc design spacc to 
identify an optimal solution. Thc composite response sur- 
face has both the power of neural networks and the cconomy 
of low-ordcr polynomials (in terms of thc numbcr of simu- 
lations nccdcd and the network training requircmcnts). Thc 
prcscnt invention handles design problcms with many more 
paramcters than would be possible using neural networks 
alone and pcrmits a designer to rapidly perform a variety of 
trade-ofi studies before arriving at the final design. 

The above as well as additional objects, features, and 
advantages of the present invention will become apparent in 
the following detailed written description. 

optimal; 

space; 

guidelines and rules of thumb; 

simultaneously; 

structure; 

evolves; 

design process; 

able; 

modem 

disciplines (multi-disciplinary optimization). 

BRIEF DESCRIPTION OF THE DRAWINGS 

The novel features believed characteristic of the invention 
are set forth in the appended claims. The invention itself 
however, as well as a preferred mode of use, further objects 

4 
and advantages thereof, will best be understood by reference 
to the following detailed description of an illustrative 
embodiment when read in conjunction with the accompa- 
nying drawings, wherein: 

FIG. 1 is a graphical representation of a parabolic function 
and the neural network approximations of this function; 

FIG. 2 depicts a geometrical diagram of a three-layer 
neural network for use with the method of the present 
invention; 

FIG. 3 depicts geometrical shapes for two- and three- 
dimensional simplexes also for use with the method of the 
present invention; 

FIG. 4 shows a flowchart of a design process for opti- 
15 mizing a design using both neural networks and polynomial 

fits to construct a composite response surface in accordance 
with one preferred embodiment of the present invention; 

FIG. 5 is a graphical presentation showing the progression 
of design optimization for an airfoil in accordance with one 

FIG. 6 shows a graph comparing the instantaneous pres- 
sure contours in the reference and optimized designs of a gas 
generator turbine; and 

FIG. 7 shows a graph comparing the instantaneous pres- 
25 sure contours in the reference and optimized designs of a 

5 

10 

20 preferred embodiment of the present invention; 

transonic turbine. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

30 
With references now to the drawings wherein like refer- 

ence numerals refer to like and corresponding parts through- 
out. While there are several methods that can be used to 
represent the functional behavior of design data, neural 

35 networks are particularly suitable for multidimensional 
interpolation where the data is not structured. Since most 
design problems in aerodynamics involve a multitude of 
parameters and datasets that often lack structure, neural nets 
provide a level of flexibility not attainable with other meth- 

40 ods. In fact, partial datasets or even a single data point 
intermingled with more complete datasets can be used to 
influence the design process. 

Aerodynamic design data has traditionally been obtained 
from a variety of sources. In the past, experiments and 

45 simple analyses have provided the majority of data used in 
design. More recently, the methods of Computational Fluid 
Dynamics (CFD) havc bccn used to generate a significant 
portion of the design data. A hierarchy of approximations for 
the governing partial differential equations ( i e ,  the Navier- 

50 Stokes equations), ranging from the simple potcntial flow 
cquations to the Eulcr and Reynolds-avcragcd, Navicr- 
Stokes equations, havc bccn used for this purposc. Typically, 
thc simpler and lower fidelity potential flow solutions havc 
bccn used in thc initial stages of dcsign bccausc thcy arc 

55 relalivcly incxpcnsivc to computc; and bccausc a large 
numbcr of solutions arc rcquircd at this stagc. Hcrc the term 
fidelity is used to dcnotc the cxtcnt to which the system of 
equations faithfully rcprescnts the physical characteristics of 
the flow. The higher fidelity Euler and Navicr-Stokes solu- 

60 tions are generally uscd in the final stages of design because 
of the high cost of computing these solutions. It has been 
found that neural networks provide a natural framework 
within which a succession of solutions of increasing fidelity 
can be represented and subsequently utilized for optimiza- 

65 tion and design thus reducing overall design costs. The 
design data can come from a variety of sources, including 
experiments and computations. Rules-of-thumb that design- 

@ 

e 
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ers have evolved over a number of years can also be response surfaces will be constructed using neural networks 
incorporated within the optimization routines as constraints. and polynomials (as the interpolatiodestimation technique). 
These facts are of considerable importance to the aircraft It should be appreciated that the primary motivation for 
industry which has accumulated enormous amounts of constructing a composite response surface based on neural 
experimental data and numerous design rules over a number 5 networks and polynomials comes from a careful examina- 
of decades. tion of the relative strengths of these two approaches in 

As mentioned earlier, in order for neural networks to be interpolating design data. Neural networks provide a very 
used effectively in design, it is imperative that the design general framework for estimation in multiple dimensions. 
space be populated both adequately and efficiently with Refemng now to FIG. 1 there is shown a graphical repre- 
simulation or experimental data. One aspect of the invention 10 sentation 40 of a Parabola 42 given by: 
disclosed here, namely the idea of parameter-based parti- 
tioning of the design space, directly addresses this problem. 
In parmeter-based partitioning, the functional dependence and the neural network approximations to this function. 
of the variables of interest with respect to some of the design Referring Once again to FIG. 1, the network is shown trained 
parameters is represented using neural networks, and the 15 with three training Pairs (Curve A) and with five training 
functional dependence with respect to the remaining parm- pairs (Curve B) 46. The generalization ability obtained when 
eters is represented using other interpolatiodestimation only three training P a s  44 are used is inadequate. It should 
techniques, e.g., polynomial regression methods. This be noted that the training error in this case (Curve A) was 
approach is an extension of traditional response surface decreased by 25 orders of magnitude. A marked improve- 
methods that are based on polynomials alone. The use of 20 ment in generalization is seen with the use of five training 
neural networks in conjunction with other methods results in Pairs 46. 
a composite response surface that models the functional The graphs 40 of FIG. 1 demonstrate that neural-network 
behavior in design space. When first or second-order poly- based generalization can become unreliable when the 
nomi& are used, the number of data sets required increases amount of available training data is very small. However, the 
in a linear or quadratic manner, respectively, with the 25 use of a single linear neuron with a preprocessor that 
number of parameters. provides the input nodes with the bias and the values of x 

)=2(x4).5)2 

Parameter-based partitioning greatly reduces the number 
of data sets required to populate the design space and thus 

and x2, 
It 

yield a perfect fit with just three training pairs. 
is, in be noted lhat such a sing1e linear 

eiiablcs dcsigns involving a !arger number of parameters a polynomial fit. The advantage Of the polynomial 
than would be possible using neural networks Con- 30 fit provided by the single linear neuron is that it requires a 

~ ~ ~ i ~ a l l ~ ,  33 or 27 simu~ations would be to popu- number of polynomial terms, and, this number increases in 
late this t ~ - d i m e n s i o n ~  design space. Clearly, this pro- a polynomial fashion with the number of dimensions. For 

results in inordinately large number of simulations in example, if a quadratic fit was used to represent the data, the 
high-dimensional design spaces. For the number of 35 number of data points required to compute the coefficients of 
simulations that would be required for a 100-parameter the polynomial would increase quadratically with the num- 
design problem is 3 1 0 0 ,  or about 5x1047. on the other hand, ber of dimensions. If the target function can be locally 

advantage to using polynomial fits instead of neural net- approach would require between 100-200 simulations. 
In addition to drastically reducing the computational and discussion above, the present 

requircments to obtain the simulation data, the method of the invention combines conventional polynomial approxima- 
present invention also has a dramatic impact on the neural tions on s-dimensional simplexes with flexibility that 
net training process. First, the reduction in the total amount neural 
of simulation data greatly reduces the training requirements. 45 whose complexity can bc adjusted on a dimensional basis to 

sider a simple design that involves design parameters. prescribed minimum number Of data points for a given 

for a linear representation within a simplex, the current approximated using polynomials lhen there is an 

40 works. 
From the 

provide. This results in a mathematical 

Of multiplc neural networks Io represcnt lhe 
training limes. This is 

a Pm Of lhc complcxity Of rcprescnting the function 
lo lhc polynomial 

suit the function being modclcd, thus reducing thc amount of 
data required, Howcvcr, it should bc noted that this assumes 
that thc local variation of thc design objcctivc function with 
Some of thc gcomctric paramctcrs can be accurately rcprc- 

data contributes lo 

is transfcrrcd “Om lhC neural 
50 scntcd using low-order polynomials. Thc terminology approximation. 

A sccond aspccl Of thc prcscnt invcndon rclatcs to thc s-dimcnsional simplex used above rcfcrs 10 a spatial con- 
choicc Of the initial dcsign point. CICdy, thc funhcr the figuration of s dimensions dctc-mincd by s + ~  cqui-spaccd 
optimal dcsign is from this initial dcsign point thc iargcr thc vcniccs, on a hypcr-sphcrc of unit radius, in a space of 
region ofdcsign space that needs 10 bc rcprcscntcd by the dimension cqud to s. By this dcfinition, a two-dimensional 
ComPositc rcsPonsc surface. An inordinately IaW number 55 simplcx is an cquilatcral trianglc that is circumscribed by a 

design SPacc. The method Of thc Prcscnt invention Uses a using polynomials whosc cocficicnts arc cstimatcd from 
SeqUCnCC Of COmpOSitC rCSpOnSC SUrfaCCS that COIlStitUtCS a data &fined on simplexes is rcfcrrcd 10 as a Koshal design. 
search process. Thus, the number of simulations required are but not of limitation, a 
relatively modest. 60 design scenario where the data can be generatcd for pre- 

of data may thcn bc rcquircd to adcquatcly populatc thc unit circlc. Thc mcthod of modcling functional bchavior 

gy way of 

Construction of Composite Response Surface scribed values of the design parameters. Additionally, 
assume that the variation of the aerodvnamic data of interest 

Therefore, in accordance with the present invention, com- with respect to some of the design parameters is not very 
posite response surfaces are constructed using a combinahon compiex ( t i s  may be because the parmcier vaiaiimij are 
of neural networks and other interpolatiodestimation tech- 65 small or because the underlying function is simple), and, 
niques (low order polynomials, Fourier transforms, etc.) By hence, does not require the generality of a neural network- 
way of example and not of limitation, the composite based estimation scheme. Therefore, simple polynomials 
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can be used to represent the variation of the function with 
these parameters and a neural network can be used for the 
remaining parameters. 

Referring to FIG. 2 there is shown a three-layer neural 
network 50 (with two hidden layers 52 and 60). The varia- 
tion of aerodynamic data along the surface of the airfoil is 
typically far more complicated than the variation with small 
changes in geometric parameter values. Hence, the neural 
network 50 is used to represent aerodynamic data variation 
in physical space. The first node 54 in the input layer is a bias 
node (input of 1.0). The second set of nodes are used to 
specify the physical location 56. In this particular two- 
dimensional design environment, the physical location 56 is 
specified by a single parameter, Le., the axial location on the 
airfoil surface. Given t geometric parameters that determine 
the shape of the airfoil, assume that the variation of the first 
c parameters results in “complex” variations in the aerody- 
namic data and the variation of the remaining s parameters 
results in fairly “simple” variations in the data that can be 
represented by low-order polynomials (t=s+c). The third set 
of nodes 58 in FIG. 2 accept the first c geometric parameters. 
Pressure values corresponding to axial locations and geom- 
etry parameters specified at the input nodes are obtained at 
the output node 62. 

The variation of the aerodynamic data with the remaining 
s variables is approximated using simple polynomials. For a 
linear variation, the points at which the data are determined 
are located at the vertices of a s-dimensional simplex and are 
at unit distance from the origin. In this case there are s+l 
vertices and s+l unknown coefficients to be determined. For 
a quadratic variation, in addition to the vertices of the 
simplex, the midpoints of all the edges are included as well. 
This results in (s+l)(s+2)/2 nodes and as many unknown 
polynomial coefficients that must be determined. FIG. 3 
shows the points at which these data are required in two 
dimensions 64 ( s 2 )  and three dimensions 66 ( s 3 )  for a 
quadratic fit. 

In the two-dimensional 64 case shown in FIG. 3 the 
pressure can be approximatcd as: 

Given the pressure values p2,p2, . . . pa at the vertices 68 of 
the simplex, the coefficients a l , q ,  . . . a, can be obtained 
from the following system of equations: 

p=a ,+a2x+a3y+a42+a+y+aJ 

Thc gcncralization to highcr-dimcnsional simplcxcs and 
highcr-ordcr polynomials is dcvclopcd as dcscribcd abovc 
whcrcin a ccnain minimum numbcr of prcssurc valucs is 
rcquircd dcpcnding on thc numbcr of dimensions and thc 
ordcr of thc polynomial uscd. Howcvcr, thc numbcr of 
prcssurc valucs that arc typically uscd is morc than this 
minimum (grcatcr than six in thc cxamplc abovc). This hclps 
rcducc thc efTcct of noise in thc data on thc accuracy with 
which thc rcsponsc surface models thc functional rclation- 
ship between the aerodynamic variable (e.g. prcssurc) and 
the geometric parameters. The coefficients in this case arc 
estimated using a least squares approach. 

The method of combining neural networks and traditional 
polynomial fitting techniques of an embodiment of practic- 
ing the present invention is as follows: 

First, obtain simulation data at each of the vertices of the 
simplex used for the polynomial fit. Multiple simula- 
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tions will be required at each vertex if some of the 
geomerric parameters are represented by the neural net; 
and 

Second, assign one neural net for every vertex of the 
simplex. Train each neural net with thc simulation data 
generated for the corresponding vertex. The input for 
each net includes the bias value, the axial location 
along the airfoil and the “complex” geometric param- 
eters. 

The pressure corresponding to a given axial location and 
a set of geometric parameter values are obtained through the 
following two-step process: 

First, obtain the pressure at each of the vertices of the 
simplex using the corresponding neural nets. This is 
easily done since the axial location on the airfoil and 
the values assigned to the “complex” geometric param- 
eters are known; and 

Second, compute the estimates of the polynomial coeffi- 
cients and then use the prescribed values of the 
“simple” geometric parameters to obtain the estimate 
for the required pressure value. 

The trained networks together with the polynomial fit 
constitute the composite response surface. The accuracy 
with which this composite response surface represents the 
actual functional dependence of the aerodynamic quantities 
on the design parameters is determined by the accuracy of 
the original aerodynamic data, the number of simulations 
used to populate the design space, the network parameters 
such as the number of neurons in the hidden layers 52 and 
60 of FIG. 2, and the order of the polynomial used. The 
accuracy with which the networks represent the training data 
is given by the training error, TE, that is minimized to obtain 
the network weights. For any one of the neural networks, 
this training error is given by: 

where P,“ is the set of target pressures, P,“ is the output 
pressure from the network, imax is the total numbcr of data 
points on thc surface of the airfoil at which the target 
pressures are prescribed, and nmax is thc number of simu- 
lations used to train this particular network. Note that nmax 
has to be large enough that the functional dcpcndcnce of the 
pressure on the “complex” variables is modeled accurately 
by the neural networks. The number of neurons is increased 
successively until thc training error is sufficiently small. 

Thc accuracy with which thc compositc rcsponsc surface 
rcprcscnts thc prcssurc as a function of the physical and 
gcomctric paramctcrs can bc cstimatcd by comparing thc 
prcssurc distributions of thc computed validation datascts 
(which arc diffcrcnt from thc training sct) to thc prcssurc 
distributions obtaincd using thc compositc rcsponsc surfacc 
for thcsc validation cascs. 

This validation proccss is csscntial in establishing thc 
adcquacy of thc gcncralization capabilitics of the rcsponsc 
surface. Typically, this is carried out at the centroid of thc 
simplex. 

Current Design Method 

Referring now to FIG. 4, there is shown the steps for 
implementing the method of the present invention. The 
objective function in step 90 is obtained from the design 
requirements. In step 100 the initial geometry or design 
point is specified. Ideally, this initial geometry should be as 
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close as possible to the optimum. In aerodynamic design, 
there are several approaches, e.g., inverse design 
procedures, meanline analyses, and streamline curvature- 
based methods, that can be used to obtain this initial 
geometry. This geometry serves as the centroid of the first 
simplex. 

Next, as shown in step 120, the design space is populated 
in the vicinity of the initial geometry by constructing a 
simplex in design space around this centroid and the geom- 
etry corresponding to each of the vertices (for a linear 
variation) and interior nodes (for quadratic or higher-degree 
polynomials) is obtained in step 140. The process then 
generates grids for each geometry in step 160. At this stage 
in the process, step 180, the fidelity level is chosen and 
solutions are generated for each geometry. Next, in steps 200 
and 220 the neural networks are trained and the polynomial 
coefficients that define the pressure variation within the 
simplex are computed. The input nodes of the neural nets 
will typically contain parameters that correspond to the 
physical location on the aerodynamic component and those 
geometric parameters that give rise to “complex” behavior 
of the objective function. At this point, step 240, the com- 
posite response surface is defined. 

Refemng once again to FIG. 4, the process continues to 
step 260 for a search of the region of the design space 
represented by the composite response surface. Various 
methods can be used to accomplish this constrained search. 
Geometrical and other constraints and rules-of-thumb that 
designers have evolved can be incorporated within this 
search procedure (for example, using a penalty function 
method). In addition, constraints that limit the search pro- 
cedure to the volume of the simplex are also incorporated in 
the search. In step 280, it is determined whether the local 
optimum obtained in the previous step lies on or outside the 
boundaries of the simplex. If the design conditions have not 
been met in step 300 of FIG. 4, Le., the search procedure 
culminates at a point on or outside the boundaries of the 
simplex, then this point is chosen as a new centroid in step 
320 and the process is repeated until the search culminates 
inside the simplex. However, the process can be stopped at 
any time when the design is deemed adequate as shown in 
step 340. 

Additionally, several types of design refinements may be 
necessary. A particular design may require many iterations 
before the optimal solution is obtained. One reason for this 
could be that the initial design is very different from the 
target. The need to minimize overall design costs dictates 
that one obtain a preliminary design based on low-fidelity, 
low-cost simulations (e.g., potential flow solutions). The 
process of FIG. 4 is then repeated using higher fidelity 
simulations (e.g., Euler or Navicr-Stokcs solutions). A sec- 
ond level of refinement may involve repeating thc process of 
FIG. 4 with a simplex of reduced size. Finally, the geometry 
corresponding to the optimal design is uscd to verify that it 
performs as required by the design specifications. 

Thc optimal design obtained above is a point in design 
space that meets all the initial design criteria. Howevcr, after 
obtaining this optimal design, the designer often wishes to 
modify the target or the constraints to arrive at a better and 
improved design, or analyze a variety of what-if scenarios. 
Several hundred such trade-off studies may be required 
before the final design is defined. These analyses can be 
performed very efficiently by representing the functional 
dependence of the aerodynamic quantities in the vicinity of 
the design obtained in the process steps of FIG. 4 using the 
composite response surface approximation and once again 
searching this space with the new targets and constraints 

10 
embedded in the search procedure. Clearly, this process can 
only be used if the new targets are contained in the region 
of design spzce whcrc the generalization capabilities of the 
response surface are adequate. It has been shown with 

5 aerodynamic design that the search procedure requires two 
to three orders of magnitude less computing time than that 
required for simulation and training the network. This allows 
the designer to rapidly perform a variety of trade-off studies 
that would naturally involve changing the constraints to 
resolve design conflicts or improve the design. 

Application of Design Methodology to Unsteady 
Flow Environments 

Aerodynamic design efforts typically deal with steady 
flows. However, there are many instances where unsteady 

15 effects can have a significant impact on the overall perfor- 
mance of the component. The current design methodology 
provides a natural framework for including unsteady effects 
in the design process. This is possible because of the very 
general manner in which the objective function can be 

As an illustration, this invention can be used in a specific 
unsteady aerodynamic design problem, namely, transonic 
high pressure (HP) aircraft engine turbine design. The flow 
in HP turbines is complicated by the presence of shocks, 

25 wakes, tip leakage, and other secondary flow effects. These 
shocks, wakes, and vortical flows are ingested by down- 
stream stages, resulting in complex interactions with one 
another and with the flow in these stages. All of these effects 
are complicated further by the inherent unsteadiness of the 
flow field that results from the relative motion of the rotor 

30 and stator rows and gives rise to unsteady interactions both 
within the “turbine stages and between the HP turbine and 
the adjacent low pressure (LP) turbine stages. These 
unsteady effects result in poor aerodynamic performance, 
unsteady blade stresses, fatigue, vibration and reduced blade 

The present design method can be used to improve the 
unsteady aerodynamic performance of transonic turbines by 
optimizing the shape of the stator and rotor airfoils. This is 
accomplished by formulating an objective function that 

40 minimizes the unsteady amplitudes on the stator vane (or 
rotor blade) subject to the constraint that the tangential force 
on the rotor airfoil (i.e., turbine work output) does not 
decrease. The pressure amplitude is used as a measure of the 
unsteadiness in the flow field and is defined as the range of 

In the case of turbines where unsteady shocks are present, 
the design process can be used to weaken, or eliminate, the 
shocks. The presence of unsteady shocks results in  large 
unsteady pressure amplitudes. Thus the pressure amplitudes 
are dircctly related to the shock strength. Hence a reduction 
In the unsteady amplitudes on thc airfoils can have thc 
additional benefit of weakening or eliminating the shocks in 
thc flow field. This example also illustrates the use of 
high-fidelity simulations, such as unsteady Navier-Stokes 
computations, to includc all thc relevant physics of the 

5 5  problem and to steer thc optimization within thc framework 
of the present invention. 
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ILLUSTRATIVE EXAMPLES OF PRACTICING 
THE INVENTION 

The following applications have been chosen to demon- 
strate how some of the objectives of the invention have been 
met. 

bo 

?*lcLirnoi-jhesis cf 2 GPllpriC EhEpe Into z? op!ima! 
Airfoil 

The present invention was used to reconstruct the shape of 
a turbine airfoil given the desired pressure distribution and 

65 
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some relevant flow and geometry parameters. The shape of 
the airfoil was not known a priori. Instead, it was evolved 
from a simple curved section of nearly uniform thickness. 
The evolved optimal airfoil closely matched the shape of the 
original airfoil that was used to obtain the pressure distri- 
bution. This constitutes a "blind" test. FIG. 5 illustrates the 
evolution of the design. The evolution of the shape of the 
airfoil is shown on the left, while the corresponding pressure 
distributions compared to the target pressure distribution are 
shown on the right. Clearly, the surface pressures approach 
the target pressure as the design progresses. The optimal 
airfoil shown at the bottom has a pressure distribution that 
is very close to the target pressure distribution. 

In this application, the following attributes of the design 
optimization method were demonstrated: 
1. Ability to start from a generic design that is far from 

2. Easy and economical to use in large-dimensional design 

3. Ability to handle a variety of design objectives; 
4. Ability to handle data of varying fidelity as the design 

5. Flexibility to handle additional data as it becomes avail- 

6. Ability to leverage the multi-tiered parallelism possible on 

optimal; 

space; 

evolves; 

able; and 

modern distributed and parallel computers. 

Design in an Unsteady Flow Environment 

The first example deals with the application of this 
method to the redesign of a gas generator turbine with the 
goal of improving its unsteady aerodynamic performance. 
The turbine is a two-stage configuration with an aggressive 
design characterized by high turning angles and high spe- 
cific work per stage. Although the turbine was designed to 
operate in the high-subsonic regime, an unsteady analysis 
showed very strong interaction effects including an unsteady 
moving shock in the axial gap region between the stator and 
rotor rows. It is hypothesized that the strength of this shock 
can be reduced by optimizing the airfoil geometries, and the 
overall unsteady aerodynamic performance of the turbine 
can thereby be improved. Since the shock can only be 
discerned by an unsteady aerodynamic analysis, a time- 
accurate Navier-Stokes solver is coupled to the neural net- 
based optimizer and provides simulation inputs to it. FIG. 6 
compares the instantaneous pressures in the reference and 
optimized designs of a gas generator turbine. Clearly, the 
shocks, labeled A and B on FIG. 6, present in thc reference 
dcsign (which appcar as clustcrcd contours in the region 
bctwcen the stator and rotor rows) have been eliminated in 
the optimized design. Thc prcscnt invcntion yields a modi- 
ficd dcsign that is closc to the reference design and achicvcs 
the same work output, yet has better unsteady aerodynamic 
pcrformancc sincc thc flow through it is shock-frcc. 

Thc second example deals with the application of the 
invention to thc rcdcsign of a transonic turbine stage. Thc 
design goal is to improve its unsteady aerodynamic pcrfor- 
mancc by weakening the shocks in thc stage and thus 
reducing their effect on turbine aerodynamics. The tangen- 
tial force on the rotor is constrained so that i t  does not 
decrease during the optimization process. 

The application of this design method yielded a new 
design with a slightly different geometry. FIG. 7 compares 
the instantaneous pressure contours in the reference and 
optimized designs of a transonic HP turbine and shows that 
the unsteady stator trailing edge shock in the reference 
design has been weakened in the optimized design. This 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

5 5  

60 

65 

12 
leads to lower unsteady pressure amplitudes on the airfoil 
surfaces and improved aerodynamic performance. These 
reductions in unsteady pressure amplitudes were obtained 
without changing the tangential force on the stator and rotor 
airfoils or the work output of the turbine. The uncooled stage 
efficiency for the optimized design was nearly identical to 
that for the reference design. 

Therefore, in accordance with the present invention, the 
following attributes of the design optimization method were 
demonstrated: 
1. Ability to handle a variety of design objectives; 
2. Ability to easily impose constraints, incorporate design 

guidelines and rules of thumb; 
3. Insensitivity to noise in the data; 
4. Ability to include time-varying data (unsteady effects) in 

5. Ability to rapidly perform design tradeoff studies; and 
6. Ability to leverage the multi-tiered parallelism possible on 

modern distributed and parallel computers. 
It is also important to note that although the present 

invention has been described in the context of providing a 
composite response surface to optimize a design, those 
skilled in the art will appreciate that the mechanisms of the 
present invention are capable of being distributed as a 
program product in a variety of forms to any type of 
information handling system, and that the present invention 
applies equally regardless of the particular type of signal 
bearing media utilized to actually carry out the distribution. 
Examples of signal bearing media include, without 
limitation, recordable type media such as floppy disk or CD 
ROMs and transmission type media such as analog or digital 
communications links. 

The above description of the method of obtaining the 
composite response surface for a specific design problem is 
only an example of how this invention can be applied and 
should not be construed as the only application of the 
invention. The invention is capable of other and different 
embodiments, and its several details are capable of modifi- 
cations in various obvious respects, all without departing 
from the invention. 

the design process; 

What is claimed is: 
1. A computer implemented method stored on recordable 

media for constructing at least one composite response 
surface, for use in engineering applications, including but 
not limited to optimizing designs and generating regression 
estimates, the method comprising: 

using partitioning of pararnetcrs for parallel analysis, each 
such parameter to be analyzed in at least one of a ncural 
network and an estimation/intcrpolation process 
whereby an objcctivc function that combines thc output 
from the ncural network and the estimation/ 
interpoiation process establishes a condition of 
optimality, and a fccdback loop allows for further 
processing in the neural nctwork process and the 
cstimadodintcrpolation process to construct a compos- 
ite response surface in a design space. 

2. A computer implcmcnted systcm for constructing at 
least one compositc response surfacc, the system compris- 
ing: 

means for using partitioning of parameters for parallel 
analysis, each such parameter to be analyzed in at least 
one of a neural network and an estimatiodinterpolation 
process whereby an objective function that combines 
the output from the neural network and the estimation/ 
interpolation process establishes a condition of 
optimality, and a feedback loop allows for further 
processing in the neural network process and the 
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estimation/interpolation process to construct a compos- 
ite response surface in a design space. 

3. The method of ciaim 1, wherein said process of 

defining an objective function for a selected physical 
response of a selected structure, and providing a group 
G of variables x,(n=l, . . . , N; Nh2), upon which the 
physical response is believed to depend; 

assigning each variable x, to a first group G1 of variables 
{yj}(j=l, . . . , N1) having a selected first characteristic 
or to a second group G2 of variables {z,}(k=l, . . . , N2) 
having a selected second characteristic, where N1 and 
N2 are selected integers satisfying N121, N281 and 
Nl+N2=N; 

providing a simplex Sl(N1) of dimension N1, centered at 
a selected location, having N1+1 vertices, and associ- 
ated with the first group G1 of N1 variables; 

for a selected positive integer M1 and a selected sequence 
of node locations, designated by N1-dimensional coor- 
dinates y=yb(b=l, . . . , M1) within and/or on the 
simplex SlgUl), providing a collection of M1 functions 
{P(y;d)}(d=l, . . . , M1) that satisfy the conditions 
f(y=y,;d)=0 if bzd, P(y=y,;b)=l, and ZP(y;y,)=l for all 
y within or on Sl(N1); 

for at least one node location, y=ya, in S1, providing a 
geometric space S2(N2;y,.) of dimension N2, that is 
orthogonal to a space containing the simplex Sl(Nl), 
that is associated with the second group of N2 
.I"... .&ables, and that is associated with the node location, 
y=y,.; 

for at least one space S2(N;y,.), performing a neural 
network analysis within the space S2(N;y,.), using 
known or prescribed data for the structure physical 
response, to obtain a function R(z;y,.), where z is an 
N2-dimensional location coordinate measured in the 
space S2(N2;y,.); 

parameter-based partitioning comprises: 

providing a sum 

CRSCy.z)=~pcV;b).R(z;yb.)b' 

as the composite response surface that approximates 
the dependence of the prescribed data for the structure 
on the group of variables xn; and 

using at lcast one polynomial fit of the function P(y;y,.) to 
the structure physical response as part of said at least 
onc estimation/interpolation analysis. 

14 
4. The method of claim 2, wherein said system for 

constructing said at least one composite surface further 
comprises a coxputer that is programmed: 

to provide an objective function for a selected physical 
response of a selected structure, and to provide a group 
G of varables x,(n=l, . . . , N; Nh2), upon which the 
physical response is believed to depend; 

to assign each variable x, to a first group G1 of variables 
{yj}(j=l, . . . , N1) having a selected first characteristic 
or to a second group G2 of variables {z,}(k=l, . . . , N2) 
having a selected second characteristic, where N1 and 
N2 are selected integers satisfying N1 h 1, N22 1 and 
Nl+N2=N; 

to provide a simplex Sl(N1) of dimension N1, centered at 
a selected location, having N1+1 vertices, and associ- 
ated with the first group G1 of N1 variables; 

for a selected positive integer M1 and a selected sequence 
of node locations, designated by N1-dimensional coor- 
dinates y=yb(b=l, . . . , MI) within and/or on the 
simplex Sl(Nl), to provide a collection of M1 func- 
tions {P(y;d)}(d=l, . . . , M1) that satisfy the conditions 
f(y=y,;d)=0 if b#d, P(y=y,;b)=l, and CP(y;y,)=l for all 
y within or on Sl(N1); 

for at least one node location, y=y,., in S1, to provide a 
geometric space S2(N2;yW) of dimension N2, that is 
orthogonal to a space containing the simplex Sl(Nl), 
that is associated with the second group of N2 
variables, and that is associated with the node location, 
y=y,.; 

for at least one space SZ(N;y,.), to perform a neural 
network analysis within the space S2(N;y,.), using 
known or prescribed data for the structure physical 
response, to obtain a function R(z;y,.), where z is an 
N2-dimensional location coordinate measured in the 
space S2(N2;yW); 
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to provide a sum 

CRSCV,z~~PCV;b).R(z;y,.)b' 

as the composite response surface that approximates 
the dependence of the prescribed data for the structure 
on the group of variables xn; and 

an estimation mechanism that is configured to use at least 
one polynomial fit of the function P(y;y,) to the 
structure physical response as part of said at least one 

45 estimation/interpolation analysis. 

* * * * *  


